334 research outputs found

    Informational and Neuromuscular Contributions to Anchoring in Rhythmic Wrist Cycling

    Get PDF
    Continuous rhythmic movements are often geared toward particular points in the movement cycle, as evidenced by a local reduction in trajectory variability. These so-called anchor points provide a window into motor control, since changes in the degree of anchoring may reveal how informational and/or neuromuscular properties are exploited in the organization of rhythmic movements. The present experiment examined the relative contributions of informational timing (metronome beeps) and neuromuscular (wrist postures) constraints on anchoring by systematically varying both factors at movement reversal points. To this end, participants cycled their right wrist in a flexed, neutral, or extended posture, either self-paced or synchronized to a metronome pacing peak flexion, peak extension, or both peak flexion and extension. The effects of these manipulations were assessed in terms of kinematics, auditory-motor coordination, and muscle activity. The degree of anchoring seen at the reversal points depended on the degree of compatibility of the prevailing configuration of neuromuscular and informational timing constraints, which had largely independent effects. We further observed systematic changes in muscular activity, which revealed distinct contributions of posture- and muscle-dependent neuromuscular properties to motor control. These findings indicate that the anchor-based discretization of the control of continuous rhythmic wrist movements is determined by both informational timing and neuromuscular constraints in a task-specific manner with subtle interactions between the two, and exemplify how movement variability may be exploited to gain such insights

    Visuomotor transformation for interception: catching while fixating

    Get PDF
    Catching a ball involves a dynamic transformation of visual information about ball motion into motor commands for moving the hand to the right place at the right time. We previously formulated a neural model for this transformation to account for the consistent leftward movement biases observed in our catching experiments. According to the model, these biases arise within the representation of target motion as well as within the transformation from a gaze-centered to a body-centered movement command. Here, we examine the validity of the latter aspect of our model in a catching task involving gaze fixation. Gaze fixation should systematically influence biases in catching movements, because in the model movement commands are only generated in the direction perpendicular to the gaze direction. Twelve participants caught balls while gazing at a fixation point positioned either straight ahead or 14° to the right. Four participants were excluded because they could not adequately maintain fixation. We again observed a consistent leftward movement bias, but the catching movements were unaffected by fixation direction. This result refutes our proposal that the leftward bias partly arises within the visuomotor transformation, and suggests instead that the bias predominantly arises within the early representation of target motion, specifically through an imbalance in the represented radial and azimuthal target motion

    Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking

    Get PDF
    Anchoring, that is, a local reduction in kinematic (i.e., spatio-temporal) variability, is commonly observed in cyclical movements, often at or around reversal points. Two kinds of underpinnings of anchoring have been identified—visual and musculoskeletal—yet their relative contributions and interrelations are largely unknown. We conducted an experiment to delineate the effects of visual and musculoskeletal factors on anchoring behavior in visuo-motor tracking. Thirteen participants (reduced to 12 in the analyses) tracked a sinusoidally moving visual target signal by making flexion–extension movements about the wrist, while both visual (i.e., gaze direction) and musculoskeletal (i.e., wrist posture) factors were manipulated in a fully crossed (3 × 3) design. Anchoring was affected by both factors in the absence of any significant interactions, implying that their contributions were independent. When gaze was directed to one of the target turning points, spatial endpoint variability at this point was reduced, but not temporal endpoint variability. With the wrist in a flexed posture, spatial and temporal endpoint variability were both smaller for the flexion endpoint than for the extension endpoint, while the converse was true for tracking with the wrist extended. Differential anchoring effects were absent for a neutral wrist posture and when gaze was fixated in between the two target turning points. Detailed analyses of the tracking trajectories in terms of velocity profiles and Hooke’s portraits showed that the tracking dynamics were affected more by wrist posture than by gaze direction. The discussion focuses on the processes underlying the observed independent effects of gaze direction and wrist posture on anchoring as well as their implications for the notion of anchoring as a generic feature of sensorimotor coordination

    A Re-Appraisal of the Effect of Amplitude on the Stability of Interlimb Coordination Based on Tightened Normalization Procedures

    Get PDF
    The stability of rhythmic interlimb coordination is governed by the coupling between limb movements. While it is amply documented how coordinative performance depends on movement frequency, theoretical considerations and recent empirical findings suggest that interlimb coupling (and hence coordinative stability) is actually mediated more by movement amplitude. Here, we present the results of a reanalysis of the data of Post, Peper, and Beek (2000), which were collected in an experiment aimed at teasing apart the effects of frequency and amplitude on coordinative stability of both steady-state and perturbed in-phase and antiphase interlimb coordination. The dataset in question was selected because we found indications that the according results were prone to artifacts, which may have obscured the potential effects of amplitude on the post-perturbation stability of interlimb coordination. We therefore redid the same analysis based on movement signals that were normalized each half-cycle for variations in oscillation center and movement frequency. With this refined analysis we found that (1) stability of both steady-state and perturbed coordination indeed seemed to depend more on amplitude than on movement frequency per se, and that (2) whereas steady-state antiphase coordination became less stable with increasing frequency for prescribed amplitudes, in-phase coordination became more stable at higher frequencies. Such effects may have been obscured in previous studies due to (1) unnoticed changes in performed amplitudes, and/or (2) artifacts related to inappropriate data normalization. The results of the present reanalysis therefore give cause for reconsidering the relation between the frequency, amplitude, and stability of interlimb coordination

    Stress detection using wearable physiological sensors

    Get PDF
    As the population increases in the world, the ratio of health carers is rapidly decreasing. Therefore, there is an urgent need to create new technologies to monitor the physical and mental health of people during their daily life. In particular, negative mental states like depression and anxiety are big problems in modern societies, usually due to stressful situations during everyday activities including work. This paper presents a machine learning approach for stress detection on people using wearable physiological sensors with the �final aim of improving their quality of life. The presented technique can monitor the state of the subject continuously and classify it into "stressful" or "non-stressful" situations. Our classification results show that this method is a good starting point towards real-time stress detection

    A dynamical neural network for hitting an approaching object

    Get PDF
    Abstract. Besides making contact with an approaching ball at the proper place and time, hitting requires control of the effector velocity at contact. A dynamical neural network for the planning of hitting movements was derived in order to account for both these requirements. The model in question implements continuous required velocity control by extending the Vector Integration To Endpoint model while providing explicit control of effector velocity at interception. It was shown that the planned movement trajectories generated by the model agreed qualitatively with the kinematics of hitting movements as observed in two recent experiments. Outstanding features of this comparison concerned the timing and amplitude of the empirical backswing movements, which were largely consistent with the predictions from the model. Several theoretical implications as well as the informational basis and possible neural underpinnings of the model were discussed

    Massively parallel computing on an organic molecular layer

    Full text link
    Current computers operate at enormous speeds of ~10^13 bits/s, but their principle of sequential logic operation has remained unchanged since the 1950s. Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is capable of remarkable decision-making based on the collective operations of millions of neurons at a time in ever-evolving neural circuitry. Here we use molecular switches to build an assembly where each molecule communicates-like neurons-with many neighbors simultaneously. The assembly's ability to reconfigure itself spontaneously for a new problem allows us to realize conventional computing constructs like logic gates and Voronoi decompositions, as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal cells to cancer cells. This is a shift from the current static computing paradigm of serial bit-processing to a regime in which a large number of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure

    Stress detection using wearable physiological and sociometric sensors

    Get PDF
    Stress remains a significant social problem for individuals in modern societies. This paper presents a machine learning approach for the automatic detection of stress of people in a social situation by combining two sensor systems that capture physiological and social responses. We compare the performance using different classifiers including support vector machine, AdaBoost, and k-nearest neighbour. Our experimental results show that by combining the measurements from both sensor systems, we could accurately discriminate between stressful and neutral situations during a controlled Trier social stress test (TSST). Moreover, this paper assesses the discriminative ability of each sensor modality individually and considers their suitability for real time stress detection. Finally, we present an study of the most discriminative features for stress detection

    Neuropsychological effects of chronic low-dose exposure to polychlorinated biphenyls (PCBs): A cross-sectional study

    Get PDF
    BACKGROUND: Exposure to indoor air of private or public buildings contaminated with polychlorinated biphenyls (PCBs) has raised health concerns in long-term users. This exploratory neuropsychological group study investigated the potential adverse effects of chronic low-dose exposure to specific air-borne low chlorinated PCBs on well-being and behavioral measures in adult humans. METHODS: Thirty employees exposed to indoor air contaminated with PCBs from elastic sealants in a school building were compared to 30 non-exposed controls matched for education and age, controlling for gender (age range 37–61 years). PCB exposure was verified by external exposure data and biological monitoring (PCB 28, 101, 138, 153, 180). Subjective complaints, learning and memory, executive function, and visual-spatial function was assessed by standardized neuropsychological testing. Since exposure status depended on the use of contaminated rooms, an objectively exposed subgroup (N = 16; PCB 28 = 0.20 μg/l; weighted exposure duration 17.9 ± 7 years) was identified and compared with 16 paired controls. RESULTS: Blood analyses indicated a moderate exposure effect size (d) relative to expected background exposure for total PCB (4.45 ± 2.44 μg/l; d = 0.4). A significant exposure effect was found for the low chlorinated PCBs 28 (0.28 ± 0.25 μg/l; d = 1.5) and 101 (0.07 ± 0.09 μg/l; d = 0.7). Although no neuropsychological effects exceeded the adjusted significance level, estimation statistics showed elevated effect sizes for several variables. The objectively exposed subgroup showed a trend towards increased subjective attentional and emotional complaints (tiredness and slowing of practical activities, emotional state) as well as attenuated attentional performance (response shifting and alertness in a cued reaction task). CONCLUSION: Chronic inhalation of low chlorinated PCBs that involved elevated blood levels was associated with a subtle attenuation of emotional well-being and attentional function. Extended research is needed to replicate the potential long-term low PCB effects in a larger sample
    • …
    corecore